ETH zürich

Implementing Control Strategies for Manipulation

Robert Katzschmann

Assistant Professor of Robotics, Soft Robotics Lab

Toshimitsu et al., Getting the ball rolling (2023)

Plan for Today

Control, but how?

Simplest controller possible: Open loop

Closed Loop Controller

THzürich

Part 1: Sensing

Fine Art America

Sensing the pose: two methods

- Direct methods: Direct reference to the world reference frame
 - The sensors obtain the absolute value of the state we are measuring

 Indirect methods: Obtain a measurement with reference to a second fra
 The sensors will estimate a relative measurement, that can be transformed into an absolute measurement

Second solution

What sensors you might find in the future?

AdaFruit

Wikimedia

1. Encoders

2. Flex Sensors

SoftRobotics

Knecht et al. Actuation, Sensing and Control of the faive Robotic Hand

3. Inertial Measurement Unit

Kalman Filters

THzürich

Sensing the touch:

• Force Sensing Resistors

<u>Ohmite</u>

Artificial Skin

Weichart et al. Tactile Sensing With Scalable Capacitive Sensor Arrays on Flexible Substrates (2021)

Wrapping up

- Pose estimation
 - Directly measuring the absolute pose (6 DoF)
 - Camera triangulation
 - \circ Measuring the pose with respect to the wrist
 - Encoders
 - Flex sensors
 - Inertial Measurement Unit
 - Kalman Filters
- Force estimation
 - Force Sensing Resistors
 - Artificial Skin

ETH zürich

Part 2: Control

Æ

1

Inverse Kinematics

- From greek kinema = motion
- In the past units we learnt that: • $J(q)\dot{q} = \chi_e = \begin{bmatrix} \dot{p}_e \\ w_e \end{bmatrix}$
- If we invert it we obtain:

 $\circ \,\, \dot{q} \,\, = \,\, J^+ \chi_e \, {
m with} \,\, {
m J}^+ \, = \,\, J^T ig(J J^T ig)^{\,-1}$

• And in a differential form:

 $\circ \; \Delta \chi_e \, = \, J^+ \Delta q$

Algorithm 1 Numerical Inverse Kinematics 1: $\mathbf{q} \leftarrow \mathbf{q}^0$ ▷ Start configuration 2: while $\|\boldsymbol{\chi}_{e}^{*} - \boldsymbol{\chi}_{e}(\mathbf{q})\| > tol \ \mathbf{do}$ ▷ While the solution is not reached $\mathbf{J}_{eA} \leftarrow \mathbf{J}_{eA} \left(\mathbf{q} \right) = \frac{\partial \boldsymbol{\chi}_e}{\partial \mathbf{q}} \left(\mathbf{q} \right)$ \triangleright Evaluate Jacobian for q 3: $\mathbf{J}_{eA}^+ \leftarrow (\mathbf{J}_{eA})^+$ 4: ▷ Calculate the pseudo inverse $\Delta \chi_{e} \leftarrow \chi_{e}^{*} - \chi_{e} (\mathbf{q})$ ▷ Find the end-effector configuration error vector 5: $\mathbf{q} \leftarrow \mathbf{q} + \mathbf{J}_{eA}^+ \Delta \boldsymbol{\chi}_e$ ▷ Update the generalized coordinates 7: end while

A possible inverse kinematics algorithm

Marco Hutter, Roland Siegwart Robot Dynamics Class ETH

To overcome stability issues the update can be scaled by a factor *k*

 $q \leftarrow q \,+\, k J^+_{eA} \Delta \chi_e \, ext{with} \, k \in (0,1)$

However this leads to a slower convergence

Inverse Kinematics

Trajectory Control

We can use a closed loop controller, but we need to add a component for the desired velocities

We define
$$\Delta r_e^t = r_e^*(t) - r_e(q^t)$$

And the desired joint velocit $\dot{m{y}}^* = J^+_{e0_P}(q^t) \cdot (\dot{r}^*_e(t) + k_{pP}\Delta r^t_e)$,

If we have a desired rotation rate we wight \dot{q} it $=J^+_{e0_R}(q^t)\cdot(\omega^*_e(t)+k_{pR}\Delta\phi)$

Where ϕ_{-} are the angles used to represent the orientation of the end effector.

Trajectory Control

Dynamic control

The dynamic model is

 $M(q)\ddot{q} + b(q,\dot{q}\,) + g(q) = au + J_c(q)^T F_c$ With:

- M(q): Generalized mass matrix
- $q, \dot{q}, \, \ddot{q} \, : \, {\rm Generalized \ position}, \, {\rm velocity \ and \ acceleration \ vector}$
- $b(q,\dot{q}\,)\,:\,{\rm Coriolis}$ and centrifugal terms
- g(q) : Gravitational terms
- $\tau~:$ External generalized forces
- F_c : External Cartesian forces
- $J_c(q)\,:\, {
 m Geometric} \,\, {
 m Jacobian} \,\, {
 m corresponding} \,\, {
 m to} \,\, {
 m the} \,\, {
 m external} \,\, {
 m forces}$

Dynamic control

The dynamic model is

$$M(q)\ddot{q}+b(q,\dot{q}\,)+g(q)= au+J_c(q)^TF_c$$

If we know the desired generalized accelerations, velocities and poses we can write

$${\ddot q}^{*} = k_p ({q}^{*} - q) + k_d ({\dot q}^{*} - {\dot q})$$

Thus the joint torques will be

$$au^*=M(q){\ddot q}^*+b(q,{\dot q}\,)+g(q)$$

Task-space control

Remember that
$$J(q)\dot{q}\ =\ \chi_{e}\ = egin{bmatrix} \dot{p}_{e} \ w_{e} \end{bmatrix}$$

If you derive that with respect to time: $=\,J(q)\ddot{q}\,+\,\dot{J}(q)\dot{q}$

And if we solve the dynamics equation for the joint acceleration and substitute in the equation ab get: $\dot{\chi}_e = J M^{-1} (au - b - g) + \dot{J} \dot{q}$

Finally, remembering th \mathbf{a} t $=J_e^TF_e$

We can write
$$\Lambda_e \dot{\chi}_e + \mu + p = F_e$$

$$egin{aligned} &\Lambda_e = (J_e M^{-1} J_e^T)^{-1} \ &\mu = \Lambda_e J_e M^{-1} b - \Lambda_e {\dot J}_e {\dot q} \ &p = \Lambda_e J_e M^{-1} g \end{aligned}$$

Task-space control

Defining the dynamics uniquely depending on the state of the end effector allows us to design a c loop

$$\dot{\chi}^*_e = egin{pmatrix} r^*_e - r_e \ \Delta \phi_e \end{pmatrix} + k_d (\chi^*_e - \chi_e)$$

<u>Maria Colleg</u>e

What should you expect?

- Uncertainty and Partial Observability
- Long Horizon
- Under/Over actuation
- Sim-to-real gap
- Tendon strain
- Skin non-linearity
- Encoder's sensibility

Uncertainty and Partial Observability

Long Horizon

Tyssenkrupp X Embotech

Underactuation and Overactuation

 z_5 Σ_6 z_3 z_6 x_5 $z_{\scriptscriptstyle A}$ z_{6} x_6 x_3 x_4 x_7 z_2 Σ_7 x_2 z_1 x_1 z_0 Σ_0 O_0 x_0

Filippeschi et al. Kinematic Optimization for the Design of a Collaborative Robot End-Effector for Tele-Echography (2021)

(a)

oftRobotics

THzürich

Sim-to-real gap

Everyday Robots

Tendon strain

Soft non-linearity: example

Science Notes

Encoder's uncertainty: example

<u>Asahi Kasei Microdevic</u>es

46

Useful links

https://link.springer.com/book/10.1007/978-3-319-54413-7 https://smartlabai.medium.com/a-brief-overview-of-imitation-learning-8a8a75c44a9c https://underactuated.csail.mit.edu/index.html https://www.kalmanfilter.net/default.aspx

