
Workshop Unit 7
Object Pose Estimation for Real

World Policies

Davide Liconti

27 October 2025

1

2

States to Actions

Agent Environment

Action 𝑎

Reward 𝑟

State 𝑠

For robotic manipulation:

- Manipulator States

“proprioception”

- Environment State

“perception”

3

Explicit vs Implicit Perception

Object Pose + Proprioception → Actions RGB image+ Proprioception → Actions

Easier to train

- Lower dim

- Clearly defined reward and goal

Need real world estimation

Can directly deploy from cameras

Very difficult to train

- High dimensional input -> need feature extraction

- Big sim-to-real gap for not photorealistic simulators

Explicit Implicit

4

6D Pose Estimation

Direct Methods

RGB (+D) (+CAD)

FoundationPose

6D Pose : [R | t] ∈ SE(3).

• Often built on transformers or CNN

backbones (e.g., FoundationPose, PoseCNN).

• Can regress to rotation (quaternion or 6D representation) and

translation vectors.

• May use synthetic data pretraining and domain adaptation for

robustness.

Pros:

✅ Can generalize across unseen instances (with proper training).

Cons:

⚠️ High data requirements.

⚠️ Harder to debug or interpret errors.

⚠️ May fail on occlusion or unseen viewpoints.

⚠️ Computationally heavier at runtime.

https://nvlabs.github.io/FoundationPose/

5

6D Pose Estimation

Marker-based Methods

•Use known patterns (AprilTags, ArUco) with precisely defined

3D geometry.

•Steps:

• Detect corner points in 2D image (from tag pattern)

• Compute pose using PnP with tag’s known 3D

coordinates.

• Known tag pattern -> 6D pose

Pros:

✅ High accuracy and low computational cost.

✅ Great for camera calibration and ground truth validation.

Cons:

⚠️ Requires visible tags (not for real objects)

⚠️ Lighting and motion blur

6

6D Pose Estimation
Indirect Methods

1. Detect 2D image keypoints corresponding to known 3D

model points.

2. Step 2: Use PnP (Perspective-n-Point) to solve for

camera–object pose

Pros:

✅ Uses strong geometric constraints (interpretable).

✅ Easy to integrate with known CAD models.

✅ Works well even with relatively small datasets.

Cons:

⚠️ Sensitive to keypoint detection noise.

⚠️ Requires known 3D model.

⚠️ Computationally heavier at runtime.

RGB (+D) + model

6D Pose : [R | t] ∈ SE(3).

2D keypoints

PnP

CNN

7

2D keypoints detection with CNNs

Estimate the 2D image locations of keypoints corresponding to

known 3D points on the object.

Why CNNs:

• Convolutional layers capture spatial patterns (edges, corners,

textures).

• Heatmap Regression: Predicts a probability map per keypoint

→ take argmax

8

Camera calibration

𝑝𝑐 = 𝐾 𝑅|𝑡 𝑝𝑤

Camera pinhole model:

- Can calibrate the camera intrinsics with checkerboard

- Usually can ignore distortion parameters (unless fisheye

camera)

- For camera extrinsics (world → camera) transformation,

you can use a marker (and then invert the

transformation!!)

9

PnP for pose estimation

Perspective-n-Point is the problem of estimating the pose of a calibrated camera given a set

of n 3D points in the world and their corresponding 2D projections in the image.

𝑝𝑐 = 𝐾 𝑅|𝑡 𝑝𝑤

known

unknown

In our case, we want to estimate the pose of the object, in camera frame

𝑝𝑐 : 2D coordinates of the keypoints

𝑝𝑤: known 3D coordinated of the keypoints
(-L/2, L/2, L/2)

(L/2, L/2, -L/2)

(L/2, -L/2, -L/2)

[(234, 531)

(123, 232)

…

]

𝐾 : intrinsics matrix (from camera calibration)

𝑓𝑥 0 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 0

Solve for 𝑹|𝒕
Needs at least 4 non-coplanar points

10

