ETH:zurich

Gues,

oftRobotics

Laboratory

States to Actions

Action a

| Reward r I

State s

ETHzlrich oftRobotics

Laboratory

For robotic manipulation:
- Manipulator States

“proprioception”

- Environment State
“perception”

D‘ (\
(5 [/
37 7
A\ N
N1y Vo

Explicit vs Implicit Perception
Exp ICIt |mp|IC|t

Object Pose + Proprioception — Actions RGB image+ Proprioception — Actions

’)
= \ B
“,/ ", - \
y E y
e :

, R

O
A

A ST
\

\\L‘..\(\

b

A
s

A
-

- L e

Easier to train Can directly deploy from cameras
- Lower dim
- Clearly defined reward and goal

— oftRobotics
ETHzurich AMACLES 3

6D Pose Estimation 431257

Direct Methods
RGB (+D) (+CAD)

1 Often built on transformers or CNN

backbones (e.g., FoundationPose, PoseCNN).
« Can regress to rotation (quaternion or 6D representation) and
translation vectors.
« May use synthetic data pretraining and domain adaptation for
robustness.

6D Pose : [R|t] € SE(3).

Pros:

< Can generalize across unseen instances (with proper training).
Cons:

A\ High data requirements.

A\ Harder to debug or interpret errors.

A\ May fail on occlusion or unseen viewpoints.

A Computationally heavier at runtime.

ETHzlrich oftRobotics

Laboratory

https://nvlabs.github.io/FoundationPose/

6D Pose Estimation

ETH:zurich

oftRobotics
Laboratory

Marker-based Methods

*Use known patterns (AprilTags, ArUco) with precisely defined
3D geometry.

«Steps:

Pros:

Detect corner points in 2D image (from tag pattern)
Compute pose using PnP with tag’s known 3D
coordinates.

Known tag pattern -> 6D pose

</ High accuracy and low computational cost.
</ Great for camera calibration and ground truth validation.

cons:

A\ Requires visible tags (not for real objects)
A\D Lighting and motion blur

6D Pose Estimation

RGB (+D) + model

1 CNN

2D keypoints

1 PnP

6D Pose : [R | t] € SE(3).

Image plane

ETHzlrich oftRobotics

Laboratory

Indirect Methods ""‘*".

1. Detect 2D image keypoints corresponding to known 3D
model points.

2. Step 2: Use PnP (Perspective-n-Point) to solve for
camera—object pose

Pros:

< Uses strong geometric constraints (interpretable).
¥ Easy to integrate with known CAD models.

¥ Works well even with relatively small datasets.

Cons:

A\ Sensitive to keypoint detection noise.
A Requires known 3D model.

A\ Computationally heavier at runtime.

2D keypoints detection with CNNs

Convolution

Input (64, 64 Output (62, 62)

B E-J-

x-0.25 x-0.2

-0.2

ETHzlric oftRobotics

Laboratory

Estimate the 2D image locations of keypoints corresponding to
known 3D points on the object.

Why CNNs:

« Convolutional layers capture spatial patterns (edges, corners,
textures).

* Heatmap Regression: Predicts a probability map per keypoint
— take argmax

Camera calibration ot

Camera pinhole model:

pc=K[R|t]pw
_ LT TX
u fx 0 ¢ 1 0 0 0 ™1 T2 T3 t:c Yw
UZOfyCyO].OOr21r22T23yw
1 o o 1llo o 1 of ™ T2 7ss te | | Zw
L 0 0 0 14L1]

- Can calibrate the camera intrinsics with checkerboard

- Usually can ignore distortion parameters (unless fisheye
camera)

- For camera extrinsics (world — camera) transformation,
you can use a marker (and then invert the
transformation!!)

ETHzlrich oftRobotics

Laboratory

PnP for pose estimation 431257

Perspective-n-Point is the problem of estimating the pose of a calibrated camera given a set
of n 3D points in the world and their corresponding 2D projections in the image.

In our case, we want to estimate the pose of the object, in camera frame

unknown

Pc = IT([R|t] pw

known
[(234, 531) K : intrinsics matrix (from camera calibration)
pe . 2D coordinates of the keypoints (123, 232) £ 0 ¢
] lo Iy Cy]
0 0 O
pw- known 3D coordinated of the keypoints
(-L/2, L/2, L/2)
o 1) Solve for [R|t]
(L2, Lz, -Li2) Needs at least 4 non-coplanar points

1y oftRobotics L/2, -L/2, -L/2
ETHzurich AMATIeS ()

9

ETH:zurich

oftRobotics

Laboratory

