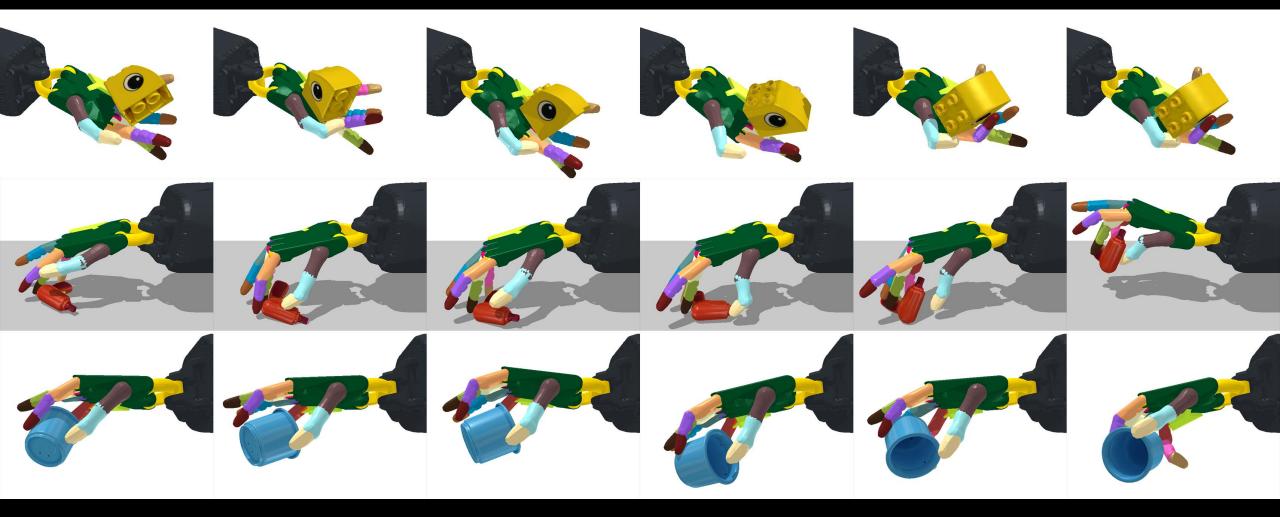


Methods and Challenges in Simulation Focus Talk Unit 5

Yasunori Toshimitsu, Manuel Mekkattu, Mike Michelis, Robert Katzschmann

Soft Robotics Lab ETH Zurich

How to simulate dexterous object manipulation?



1. Chen, Tao, Jie Xu, and Pulkit Agrawal. "A system for general in-hand object re-orientation." Conference on Robot Learning. PMLR, 2022. https://taochenshh.github.io/projects/in-hand-reorientation

Why are simulators important?

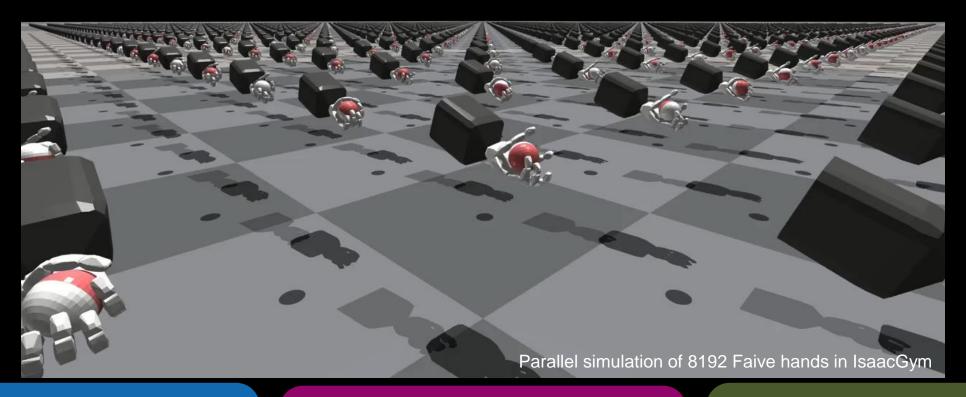
Why simulators?

Safe and fast environment for testing robot controllers

Parallelized simulation for reinforcement learning (RL)

Model-based control based on simulators

Parallelized Simulation for Reinforcement Learning (RL)



Proximal Policy Optimization (PPO)

- Reinforcement Learning (RL) algorithm
- Scales well to parallel environments³

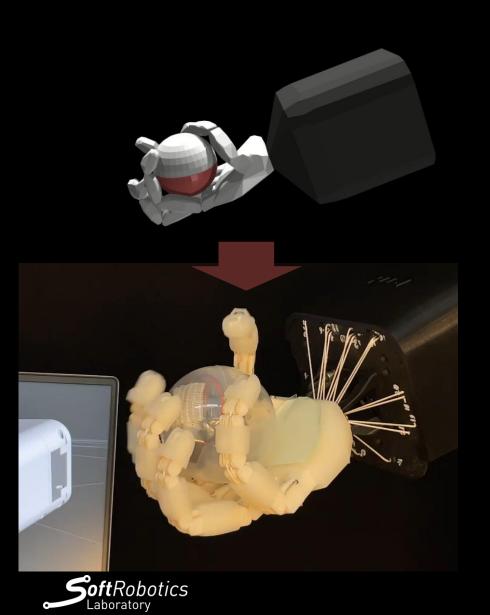
Domain Randomization¹

- Randomize physics
- Add noise to observations
- Make it robust for physical deployment

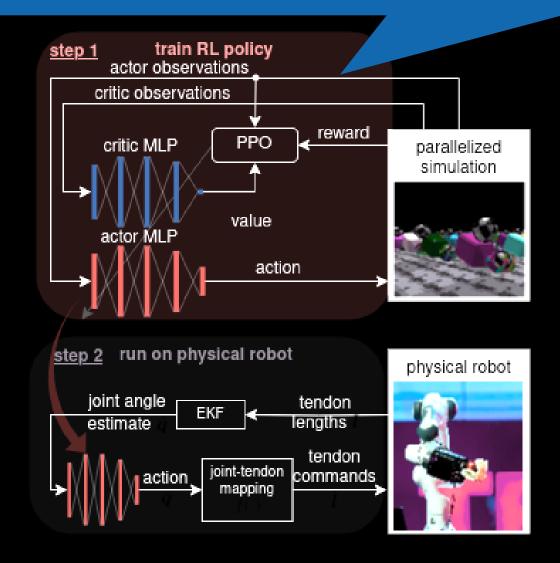
Parallelized Simulation

- 1000's of robots in parallel on GPU^{2,3}
- Wide exploration of initial conditions, parameters and control policies
- OpenAl, Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob McGrew, Jakub Pachocki, et al. 2018. "Learning Dexterous In-Hand Manipulation." arXiv [cs.LG]. arXiv. http://arxiv.org/abs/1808.00177
- . Makoviychuk, Viktor, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey, Miles Macklin, David Hoeller, et al. 2021. "Isaac Gym: High Performance GPU Based Physics Simulation For Robot Learning." Https://openreview.net > Forumhttps://openreview.net > Forum. https://openreview.net/pdf?id=fgFBtYgJQX_.
- 3. Rudin, Nikita, David Hoeller, Philipp Reist, and Marco Hutter. 2021. "Learning to Walk in Minutes Using Massively Parallel Deep Reinforcement Learning." Https://openreview.net/>
 Forumhttps://openreview.net > Forum. https://openreview.net/pdf?id=wK2fDDJ5VcF.

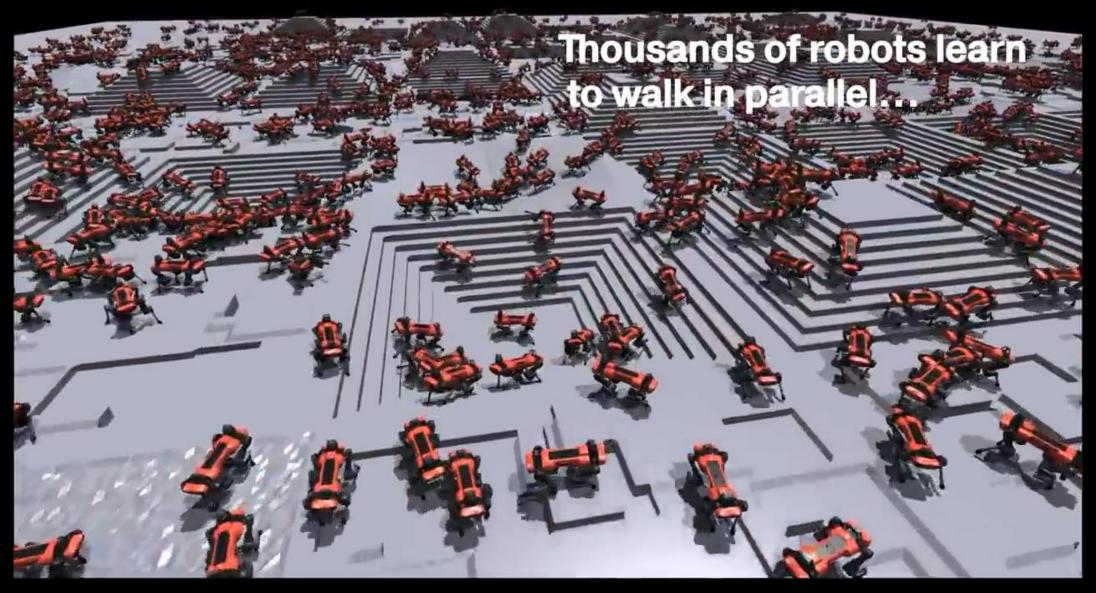
Sim2real framework for dexterous manipulation



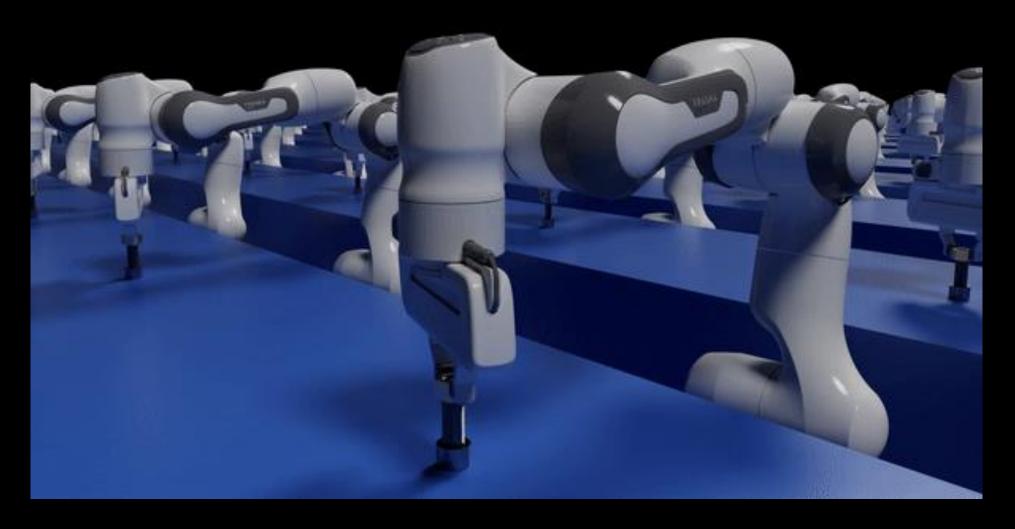
1 hour of training at 70,000 fps ≒ 2 months of simulated time



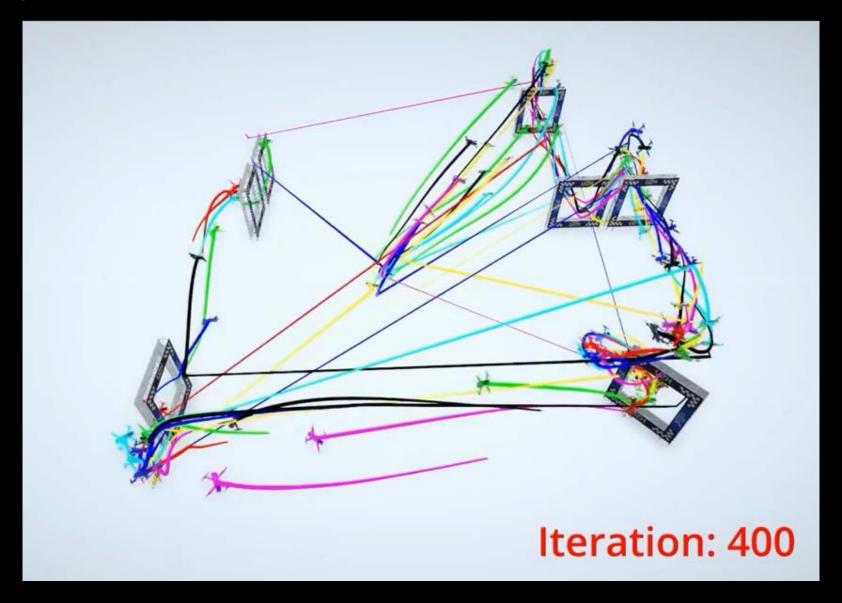
Massively parallel RL in different domains of robotics



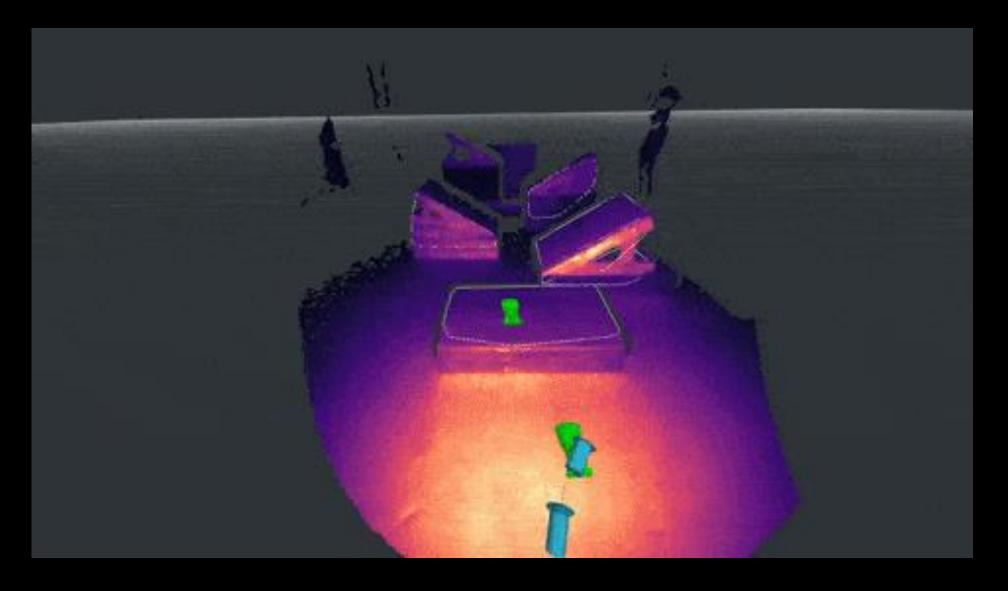
Massively parallel RL in different domains of robotics



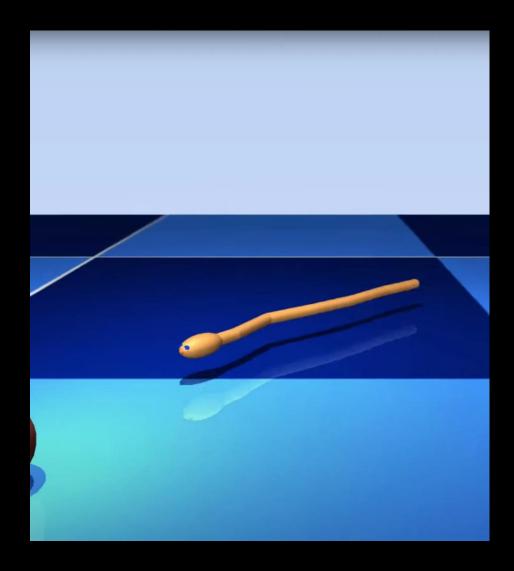
Massively parallel RL in different domains of robotics



Online Rigid Body Sim for BD Atlas' MPC



Run model predictive control on the simulated MuJoCo model



MPC: model predictive control

- define a cost function to minimize, encoding the desired task
- iteratively apply optimization at every step to find the "best" control inputs

MuJoCo-MPC uses the MuJoCo simulation as the **model** in the MPC

→ efficient and accurate model-based control

https://github.com/google-deepmind/mujoco_mpc

Howell, Taylor, Nimrod Gileadi, Saran Tunyasuvunakool, Kevin Zakka, Tom Erez, and Yuval Tassa. 2022. "Predictive Sampling: Real-Time Behaviour Synthesis with MuJoCo." arXiv [Cs.RO]. arXiv. http://arxiv.org/abs/2212.00541.

key idea when simulating robots:

simplification

Why simplify?

Efficiency

trade off some accuracy for speed

For example...

RL→ efficient simulation enables faster training

MPC→ faster exploration enables higher control frequency, longer control horizon

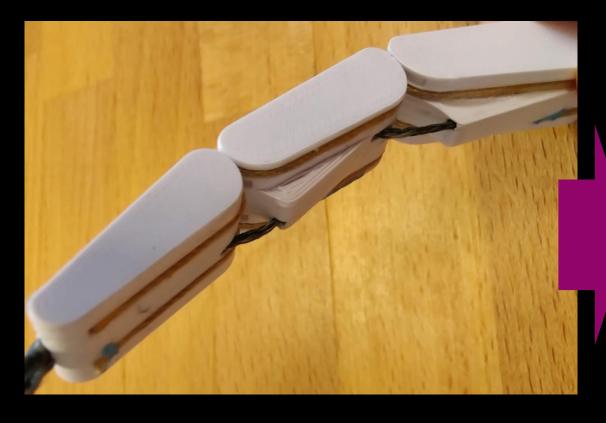
Modularity

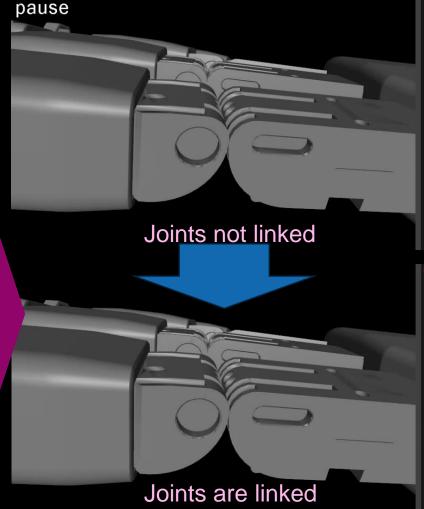
If the real robot has a good low-level controller, the simulator can use high-level control inputs

For example...

The tendons of the Faive Hand are not (currently) replicated in the simulated model, and it accepts joint-level commands which are easier to learn

Simplification example #1: rolling contact joints





thumb_mp2d 0 root2index_p 0 root2index_p 0 index_pp2m 0 index pp2m 0 index_mp2d 0 index_mp2d 0 root2middle root2middle middle pp2 Clear all thumb_base thumb_pp2m 0 root2index p 0 index_pp2m 0

> middle_pp2 root2ring_pp 0 ring_pp2mp root2pinky_p<u>0</u>

pinky_pp2m 0

Real robot

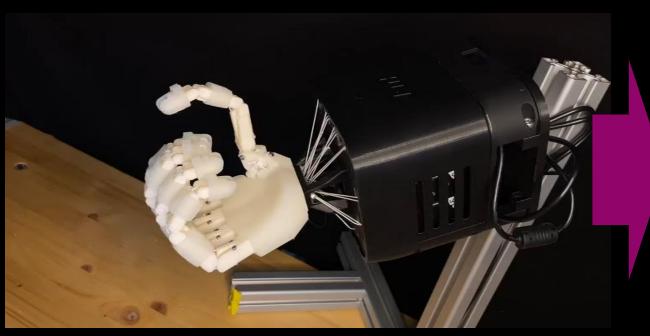
Contact between cylindrical surfaces

Ligaments ensure that they don't slide or move apart

Simulated robot

Two hinge joints make up a single rolling contact joint Constrained to roll together when the joint is actuated

Simplification example #2: tendon-driven actuation





Real robot

16 servo motors drive the tendons to actuate the hand Low-level controller converts joint angles → tendon lengths

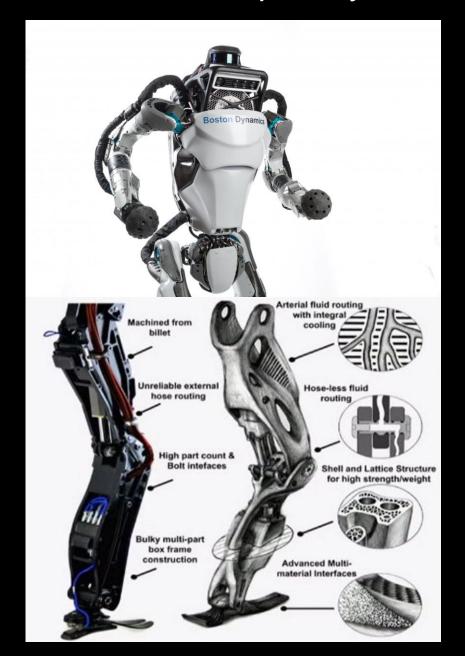
→ servo motor angles and sends it to Dynamixel motors

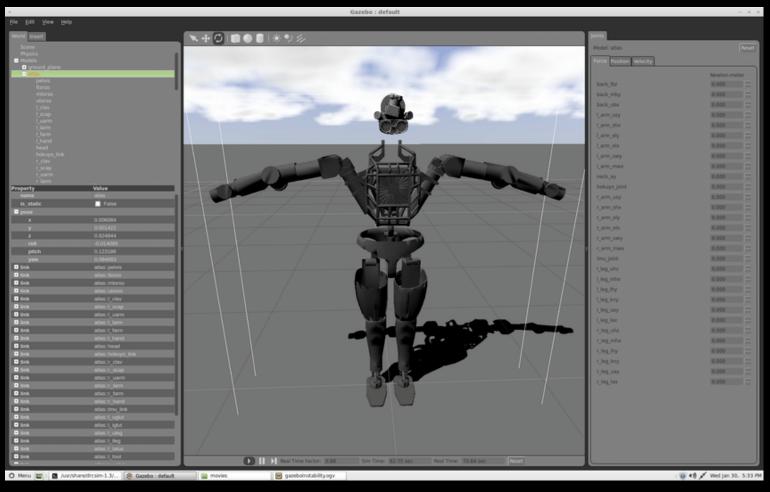
Simulated robot

MuJoCo : right faive modular

The musculoskeletal system is ignored, and the robot is modelled purely as a joint axis-driven robot

Another example: Hydraulic actuators of the Atlas robot





Summary

Simulate and fail often to simplify later real-world experiments

Summary of why simulators are needed

Safe and fast environment for testing robot controllers

Parallelized simulation for reinforcement learning (RL)

Model-based control based on simulators

What simulators are out there? (2025 ver.)

Important questions for simulators:

Stability and accuracy?

GPU parallelization (i.e. speed)?

Open source?

Extensive documentation / large community?

"Team Google"

"Team NVIDIA"

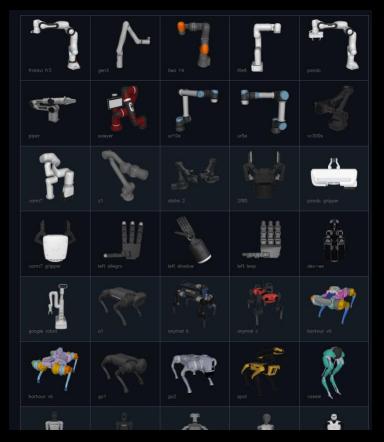
Isaac Sim / NVIDIA Omniverse

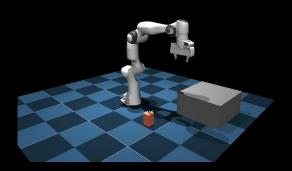
MuJoCo

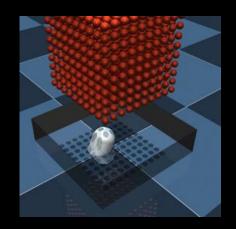
(Multi-Joint dynamics with Contact)

Collection of high-quality MuJoCo assets: https://github.com/google-deepmind/mujoco_menagerie

- Originally developed by Emo Todorov et al. (just 3 people!)
- Optimization-based contact solver for efficiency, accuracy, and stability
- Acquired by Google DeepMind in 2021, open sourced 7 months later
- Supports URDF or MJCF (MuJoCo format)
- Originally CPU-only, but...
- MuJoCo XLA (MJX)
 - JAX/XLA rewrite of MuJoCo
 - runs on CPU, GPU, or TPU
 - Doesn't support some features ⊗
- MuJoCo Warp (MJWarp)
 - Team up with NVIDIA
 - Now in Beta
 - GPU-optimized reimplementation to run on NVIDIA hardware
 - Should support more MuJoCo features than MJX
 - Will be integrated into MJX in future







NVIDIA Isaac Sim / Isaac Lab

- Isaac Sim
 - simulator using PhysX for the physics engine
 - Apache-2.0 open source (building/using it requires other NVIDIA licensed components)
- Isaac Lab:
 - Wraps Isaac Sim, to build RL / IL workflows
- Only runs on NVIDIA's GPUs
- Lab will become compatible with Newton
 - open-source GPU physics engine
 - MuJoCo-Warp solver

MuJoCo

In our hands-on part, we will implement dexterous RL on the ORCA hand using faive_lab, an extension of Isaac Lab!

