

Workshop Unit 4

Interfacing & Controlling your Robotic Hand

Barnabas Gavin Cangan

14 October 2024

Overview

- 1. Required Materials
- 2. Structure of the Code Framework
- 3. Setup and running the example code

Required Material

Dynamixel Motors	Dynamixel Equipment	Your own Computer
Each motor must have a unique ID. See the guide for how to change the Dynamixel IDs.	 U2D2 w/ USB cable U2D2 Power Hub Board 12V Power Supply 	 Linux operating system <i>Python</i> installed <i>Dynamixel-SDK</i> installed

Code Framework

joint angles tendon lengths motor positions gripper definitions

motor information

Gripper Defs:

- Definitions of the Gripper
- Stores joint, tendon and motor definitions

example.py Define your joint-level motions and poses.

- Calculate motor positions
- Initialize & terminate motors
- Calibrate hand & read config

Dynamixel Client:

- Read & Write motor param.
- Communication w/ motors

Finger Kinematics:

- Calculate free tendon length from joint position

Setup and running the example code

- Setup the Dynamixel motors
 - Set unique IDs for each motor
 - Set baudrate to 3 Mbps
- Run the example code
 - Run *example.py* and check if everything works
- Adjust the framework to your application
 Implement your kinematics

TH zürich

